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I. INTRODUCTION
B

This paper is concerned with the accuracy of numerical solutions with coarse
meshes of nonlinear partial differential equations, such as the Navier-Stokes. By
presuming smooth, convergent difference approx1mations. %he—au%her~ea+r+ed—ou€ some
first differential analyses f the coTputat1ona1 errors and nacommendeq an upper
error bound of 0.03 Reégz_ﬁor second order accurate conservat1ve difference schemes,
computed at ReAi) n_mg: iat1ona1 solutions of complex problems, the ReAx
is aﬂprec1ab1y ]arger and fhe so]ut1ons are oscillatory. Neither the local- trunca-
tion error nor the suggested upper bound provide any meaningful measure of the errors
of the computed solution. Indeed, the computed solutions at successive mesh refine-
ments often become "worse" and suggest possible nonuniform convergence of the
sequence as Ax > 0. Therefore we solve analytically the difference formulations of
some model problems to learn about the roles of various physical and computational
parameters, including the mesh Reynolds number ReAx. The analytic results are
verified by computational solutions of the model equations with various time depen-
dent algorithms.

II. MODEL ANALYSIS

The following model problems with known exact steady state differential solu-
tions are chosen for study.

1. Model 1: The Burgers' equation

= ] .
Ug *+ uu = pe Uy (1)
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u(x=0) = 0, u(x=1) = -1 (2)
2. Model 2: The same Burgers' equation with upstream boundary value and down-
stream extrapolation
B = ﬂ = =
u(x=-1) =1 o (x=1) =0 (3)

3. Model 3: The one-dimensional gas dynamic equations

oy *+ (ou), =0 :
2 s allh.
(pu)g + (pu)y * Py = RE Ynx
p= Ao (4)
with upstream boundary values and downstream extrapolation conditions

u(x=-1) =1, p(x=-1) =1
:a—l.‘- = = §-9- = =
T (x=1) = 0, and = (x=1) = 0 . (5)

The steady state solution of (4) and (5) represents a jump from an upstream uni-
form flow to a downstram uniform flow with velocity A', which is the real solution
of u from the Hugoniot relation

u+ AU =14+ (6)
r is the polytropic index defining the thermodynamic process of transition and A is
the initial data upstream.

Equations (1) and (4) are discretized according to the algorithm:
A 2
Uy " (Uj+] 2Uj + Uj_])/Ax (7a)
= (y2 = 2 -2
wy = (u272), v [ Y0505 050 + (U3, - W3]/ (2en2ex (7b)

which renders the resulting difference formulations strictly "conservative", i.e.,

summable without residue in the interior of the domain of surrmation.2 Thus the

Stokes theorem can be applied to the difference form to relate the boundary condi-

tions explicitly with any interior point values. The difference form of Eq. (1) in

the steady state is

o * ylUgop) - Vg = BRGEE [ga-2upy ) 1
/

The difference form of Eqs. (4) with discretization parameter Y for the continuity
and Yo for the momentum equation is

u




2[(00) 44y = (000 53] * - [og(Ug-05.0) + Uglog-esy)] = 0
2[(00) 5, - (09 ] + Yz[uj{(pmj” S A0 g b (05U )]

2(2+v2)
A[(pjﬂ)r 2 ("j-l)r]’ Rez [”j+1‘2” - ] @

The downstream extrapolation conditions are expressed as
U, = JJ_] Py = Pg.7 » etc. (10)

There are other algorithms that lead to strictly conservative difference formula-
tions for complicated nonlinear terms.

Real solutions of each model system of equations are obtained analytically as
follows:

1. Obtain exact solution(s) of the system for special values
of Reax (or REAX) such as ReAx, REax, ... R¥Ax

2. Identify the region of rapid variation (or jump) in the
exact solution in which the fully nonlinear difference
relations must be taken.

3. Obtain linearized small perturbation solutions of the VETESSTON e SRR
difference equations system about the exact solution in s P — |
its region of small variation, generally including the f* o Buil Sectiss (]
boundary. The linearized solution serves to relate the wbnu;' g e
boundary values to those function values where the linear - ,ﬂfﬁ

region joins the nonlinear (or jump) region in the interior“)a7
STRISUTION/ RYALABYLTY fonEr

4, Sum up all the difference relations over the entire domain fmf VAL end o SPECIAL
to relate the boundary values. F} !

3 5. Obtain all the real sets of solutions of the function values
. from as many algebraic equations deduced in 2 through 4.

6. Asymptotic results for finite but large ReAx are studied
with or without explicit solution(s) of the nonlinear
system of algebraic equations.

For practical range of ReAx > 10, the one term asymptotic results give simple
functional dependence of the error of the "exact difference solution" compared with
the "exact differential solution”. Such an analysis is illustrated in Ref. 3 for
Model 1 and detailed in Ref. 4 for the other cases. The analytical results have
been verified by digital computations with the time dependent schemes of
Brailovskaya,> of Victoria-Widhopf,® of Peyret-Viviand,’ and of Cheng-Allen,' all
with the same conservative steady state equation (8). A1l the computed results
under the same steady state criterion agree with one another and with the analytic
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estimates to three significant figures. As shown in Fig. 1, the errors of computed
results for negative values of y increases to some maximum at ReAx ~ 3 and then
reaches some minimum at larger ReAx. The solutions in different ranges of ReAx are

illustrated in Fig. 2. Similar results for Model 2 and Model 3 are given in Figs 3
and 4 and in Figs. 5 to 7, respectively. When the time dependent scheme 1like
MacCormack is used, which does not reduce to (8) in the steady state, the error in-
creases monotonically as ~ 0.06 ReAx? without plateau or extrema as ReAx increases
(Fig. 1). The presence of error minimum at suitable large ReAx values may be a
characteristic of the strictly conservative difference formulation. |

IIT. ANALYTIC INFERENCES

The following qualitative inferences pertinent to practical computations may be
obtained from the results of the above model study:

1. It is generally sufficient to compute with 8 - 10 mesh points
within the characteristic length of the problem when ReAx is in the
appropriate range. Many more mesh points do not improve the accuracy
of the computed results at the same ReAx.

2. There exist for a certain class of difference formulation
critical mesh Reynolds numbers (RgAx, R;Ax, etc.) at which computations ]
will yield smooth but abrupt jump solutions with one or more mesh points [
within the jump. They can be excellent approximate solutions at coarse
mesh, although solutions with minimal error occur at slightly different
values of ReAx. For suitable choices of the algorithm, the trough of
the error curve around RéAx can be flat so that computations in a broad
range of values of ReAx can yield results as accurate as what might be
expected from smooth solutions at ReAx ~ 1.

3. The magnitudes of these critical ReAx can be determined a priori 5 ;
for the model problems. They depend on the Yy's representing the higher I3
order details of the difference algorithms. The value of REAX depends
more importantly on the discretization parameter (y]) for the continuity
: equation than on Y, of the momentum equation (Fig. 6). The thermodynamic
variables in the polytropic relation in (4) appears unimportant.

T T

e

4. With proper boundary formulation (such as Model 1), computations
at Reax < 1 (or < Rghx) yield smooth and accurate results with an upper
bound of ~ 0.03 ReAx” as is determined from the first differential
1 analysis.] The sequence appears to converge to the correct solution as
1 ReAx = 0. Computational results at ReAx > ReAx are oscillatory and may
; or may not exhibit minimum error at some critical ReAx > REAX.
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5. With uncertain boundary formulation (such as downstream extrap-
olation in Models 2 and 3), smooth computed solutions will be obtained
at ReAx < RéAx but they give wrong Hugoniot or jump magnitudes. The

sequence of solutions can "converge" to the wrong solution as Reax 2»-0.
The oscillatory computed solutions at Ress > ReAX appears to diverge

as ReAx decreases toward REAx. But, at or near the suitable critical
ReAx under proper choices of y‘s, they can provide excellent "asumptotic
approximations" with small maximal errors; quite acceptable in practice.

The above inferences are drawn from the study of only the one-dimensional model
equations, and discretized only in strictly conservative difference formulations.
They are not expected to apply if the difference formulation is non-conservative
since Stokes' theorem is crucial to the analysis. They are, however, hoped to hold
without serious modifications for more complex equation systems in multi-space
dimensions. For the latter purpose, we shall only present some numerical evidences.

IV. TWO DIMENSIONAL COMPUTATIONS WITH NAVIER-STOKES EQUATIONS

The propagation of an oblique, planar shock wave in a uniform supersonic stream
at M = 2 and its eventual reflection from an inviscid wall have been computed at
various mesh Reynolds numbers.9 The simplest algorithm with b T © S 0 (Cheng-Allen)
was adopted for discretizing the Navier-Stokes equations with downstream extrapola-
tion conditions. Fig. 8 shows the computed results of a shock with pressure ratio
pz/p] = 1.910. If the 1-D model results should be assumed to apply to the components
normal to the shock, the estimate of the criﬁica] Reynolds number (ReAn])crit based
on the upstream velocity U]n will be 4/(1 - Uzﬂ-), according to the procedure in
Ref. 2, p. 181. The critical Reynolds number ?ReAxl)crit. based on the mesh size Ax
in the x-direction will be 15.2 for the above case. We then observe in Fig. 8 that
smooth solutions are obtained with (ReAx)/(ReAx1)crit < 1. Transition from smooth
to oscillatory solutions takes place gradually when (ReAx1)/(Reaxl)crit ~ 1. The .
reflection of the above shock from an inviscid will is shown in Fig. 9. The reflect-
ed shock has a pressure ratio p3/p2 = 1.885 with (RgAxl) = 22.1. The same inference
concerning the transition of the smooth to oscillatory solutions is observed. Fig.
10 shows the computed pressure profiles for a weak shock with pzlp] = 1.096 and
(R@Axl) = 122. Fig. 11 gives the variation of the error norms with ReAx1. The
occurrence of an error minimum of <3% appears when (ReAx1)/(ReAx1)crit is between
3.1 and 6.2. This ratio compares with 2 as is shown in Fig. 7 for the case y]=y2=0
for the one dimensional gas dynamics model. In view of the fact that the case
y]=yz=0 departs substantially from the optimal curve shown in Fig. 6 and that the
model is in one rather than two space dimensions, the agreement is encouraging. How
well the analytic inference outlined in the previous section may hold and to what
extent these inferences may have to be modified when more complex problems are
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solved computationally with the Navier-Stokes equations, clearly needs further study.
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CAPTIONS OF FIC ES

Maximum error E_ as a function of mest -ynolds number Reax =
for Burgers' Model with downstream boundary value.

AUAX
v

Type of solutions of Burgers' model with downstream boundary value.
Type of solutions of Burgers' model with downstream extrapolation.
E_ vs Reax for Burgers' model with downstream extrapolation.

Type of solutions of 1-D gas dynamics model.
(a) jump next to downstream boundary k = J-2.
(b) jump at intermediate point k < J-2.

Optimal discretization parameters for 1-D gas dynamic model.
E_ vs ReAx, for 1-D gas dynamics model r = 1.4, k = J-1.

Pressure field of an oblique shock with p2/p] = 1.910 in Mach 2
supersonic flow.

Pressure field of shock reflection from inviscid wall pz/p] = 1.910,
P3/P2 = 1.885.

Pressure field of an oblique weak shock with pz/p] = 1.096.

Error norms as a function of ReAx for shock calculations.
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